Cambridge Assessment International Education

O LEVEL 4024

MATHEMATICS

CLASSIFIED WORKBOOK

PAPER 1 AND PAPER 2

WITH ANSWERS

Prepared By

TASLEEM KHALID QURESHI

Lahore Grammar School (OPF Senior Girls Branch)
Beaconhouse School System (Johar Town Boys Campus)
Crescent School (Shadman)

©STUDENTS RESOURCE

Mob: 0321-4924519
Tel: 042-37180077

Johar Town : Opp. Beaconhouse JTC Adjacent Jamia Masjid PIA Society Shadewal Chowk, Johar Town Lahore. Mob: 0313-4567519 Tel: 042-35227007

Book Title:	O Level Mathematics Topical Workbook
Book Code	739
Edition:	$\square^{{ }^{\text {G }} \text { Edition }}$
Format:	4024 / Topical P1 / P2
Prepared By:	Tasleem Khalid (+923334254312)
Pattern:	According to Latest 200]-20 Syllabus
Published by:	STUDENTS RESOURCE ${ }^{\circledR}$ Airport Road 0423-5700707
Price:	

Copyright © 20ㅁ

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retriveal system, without permission in writing from the publisher or under licence from the Copyright from Intellectual Property Organization Pakistan.

Content

Formula Sheet 4
Topic 1: Numbers 9
Topic 2: \quad Set language and notation 18
Topic 3: Squares, square roots, cubes and cube roots 34
Topic 4: Directed numbers 38
Topic 5: Vulgar and decimal fractions and percentages 41
Topic 6: Ordering 45
Topic 7: Standard form 51
Topic 9: Estimation 59
Topic 10: Limits of accuracy 65
Topic 11: Ratio, proportion, rate 72
Topic 12: Percentages. 79
Topic 14,15: Time, Money 87
Topic 16: Personal and small business finance 96
Topic 17: Algebraic representation and formulae 101
Topic 18: Algebraic manipulation 106
Topic 19: Indices 115
Topic 20: Solutions of equations and inequalities. 121
Topic 20.1 Simultaneous Equations 122
Topic 20.2 Inequalities 126
Topic 20.3 Linear equations \& Quadratic equations 129
Topic 21: Graphical representation of inequalities 141
Topic 22: Sequence 154
Topic 23: Variation. 170
Topic 24: Kinematics 176
Topic 25: Graphs of Functions 196
Topic 26: Function 216
Topic 27: Coordinate geometry 225
Topic 30: Similarity and congruence 234
Topic 31: Symmetry 241
Topic 32: Angles (Circles) 251
Topic 32a: Polygons \& Angle Properties 261
Topic 33: Loci 271
Topic 35: Mensuration 285
Topic 36: Trigonometry 314
Topic 36.1: Trigonometry and 3D Shaps 315
Topic 36.2: Further Trigonometry 321
Topic 36.3: Bearing 336
Topic 37: Vectors 342
Topic 38: Matrices 359
Topic 39: Transformations 366
Topic 40: Probability 386
Topic 41: Categorical, numerical and grouped data 412
Topic 42: Statistical diagrams 419
Topic 42.1: \quad Scattered diagrams 420
Topic 42.2: Bar Chart and Histogram 425
Topic 42.3: Frequency and Polygon 432
Topic 42.4: Pie Chart. 434
Topic 42.5: Cumulative Frequency 436
Answer 447

Formulae Sheets

Conversion Factors:

Length:	Mass:
	Volume:
$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~kg}=1000 \mathrm{gm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{gm}=1000$ milligram

Standard form $\quad A \times \mathbf{1 0}^{\boldsymbol{n}}$ where A lies between 1 and 10 and n is a natural number.

Significant figures

$>$ All non-zero digits are significant. $36152.1 \approx 6$ S.f
> Zeros b/w non-zero digits are significant. 301 ≈ 3 s.f
$>$ Zeros before the first non-zero digit are not significant. $0.000361 \approx 3$ S.f
$>$ Zeros following a non-zero digit after the decimal point are significant. 0.300 $\approx \mathbf{3}$ S.f
> Zeros following a non-zero digit in a whole number may or may not be significant. $\mathbf{3 6 1 0 0} \approx 3$ s.f

| Percentages: |
| :--- | :--- |
| Profit $=$ S.P. - C.P. |
| Loss $=$ C.P. - S.P. |
| Profit/loss percentage $\quad=\frac{\text { Profit/loss }}{\text { C. }} \times \mathbf{1 0 0}$ |
| Discount percentage $\quad=\frac{\text { Discount }}{\text { original Amount }} \times 100$ |
| Increase/Decrease percent $=\frac{\text { Increse } / \text { Decrease }}{\text { Original Amount }} \times \mathbf{1 0 0}$ |

Quadratic formula
$: \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$a^{2}+2 a b+b^{2}=(a+b)^{2}$
$a^{2}-2 a b+b^{2}=(a-b)^{2}$
$a^{2}-b^{2}=(a+b)(a-b)$

| Simple Interest $=\frac{P R T}{100}$
 Compound Interest $=P\left(1+\frac{r}{100}\right.$ |
| :--- | :--- |

Speed, Distance and Time:

Distance $=$ speed \times time
Speed $=$ distance \div time
Time $=$ distance \div Speed
Average speed $=\frac{\text { total distance }}{\text { total time }}$
Acceleration/Retardation $=\frac{v-u}{t}$

Variation:
Direct Variation: $\quad y=k x$
Inverse Variation: $\quad y=\frac{k}{x}$

Formulae Sheets

Algebraic indices:

* $a^{m} \times a^{n}=a^{m+n}$
* $a^{m} \div a^{n}=a^{m-n}$
* $a^{-m}=\frac{1}{a^{m}}$
* $a^{0}=1$

Upper and lower bounds:

Add. \& Multiplication Rule:

To get the lower bound = Add (or multiply) two lower bounds.
To get the Upper bound = Add (or multiply) two upper bounds.

SubtractionE Division Rule:

To get lower bound = L.B of larger value $-\operatorname{or}(\div)$ U.B of smaller value
To get Upper bound $=$ U.B of larger value or (\div) L.B of smaller value

Matrices:

$>$ If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then determinant of A or $|A|=a d-b c$
$>$ If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then Adjoint of $A=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \quad A^{-1}=\frac{1}{|A|} \times \operatorname{Adjoint}$ of A

Mensuration

Volume of cuboid
$=$ length \times width \times height

Volume of cylinder
$=\pi r^{2} h$

Volume of prism
$=$ area of cross-section \times length

$$
\begin{aligned}
\text { Length of Arc } & =\frac{\theta}{360} 2 \pi r \\
\text { Area of Sector } & =\frac{\theta}{360} \pi r^{2}
\end{aligned}
$$

Area of right angled triangle $=\frac{1}{2} \times$ base $\times h e i g h t$,

Area of Rectangle $=l \times b$

Perimeter of Rectangle $=2(l+b)$

Area of Square $=\boldsymbol{l} \times \boldsymbol{l}:$ Perimeter of Square $=4$

Formulae Sheets

Similarity \& Congurency

Congruent triangles: - SSS Postulate * SAS Postulate * AAS Postulate * RHS Postulate	Similar triangles: Two triangles are similar if Two angles of one Δ are equal to two angles of other Δ. $>$ Ratios of the corresponding sides are equal. iii. $\frac{A_{1}}{A_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$ iv. $\frac{V_{1}}{V_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{3}$ v. $\frac{A_{1}}{A_{2}}=\frac{b_{1}}{b_{2}} \quad \Delta$ s with the same height
Trigonometry $\therefore \operatorname{Sin} \theta=\frac{o p p .}{H y p}=\frac{\text { Per } .}{H y p .}$ * $\operatorname{Cos} \boldsymbol{\theta}=\frac{\text { Adj. }}{\text { Hyp. }}=\frac{\text { Base }}{\text { Hyp. }}$ * $\operatorname{Tan} \theta=\frac{o p p .}{\text { adj. }}=\frac{\text { per. }}{\text { Base }}$ * Pythagoras Theorem: $a^{2}=b^{2}+c^{2}$	Further Trigonometry $* \underline{\text { Area of triangle }}=\frac{1}{2} \cdot$ b. c. $\sin A$ * Sine Rule: $\quad \frac{A}{\operatorname{Sina}}=\frac{B}{\operatorname{Sinb}}=\frac{C}{\operatorname{Sinc}}$ ($A S S, A A S$) \because Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \times \cos A$ (SAS) $\% \quad \operatorname{Cos} \mathrm{~A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ (SSS)

Co-ordinate Geometry:

* Gradiant $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
* $y=m x+c$

Midpoint $M(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

* $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
* Parallel lines have the same gradient. $m_{1}=m_{2}$
* Perpendicular Lines: $m_{1} \times m_{2}=-1$

Formulae Sheets

Patterns and sequences:

* Linear sequences: nth term $=a+(n-1) d$
* Quadratic sequences: nth term $=a+(n-1) 1$ st difference $+\frac{(n-1)(n-2)}{2} 2$ nd difference

Polygons

* Sum of an Interior angles of a polygon $=(n-2) \times 180^{\circ}$
* Sum of all the exterior angles of a polygon $=360^{\circ}$.
* Each Interior angles of a polygon $=\frac{(n-2) \times 180^{\circ}}{n}$
* No. of sides of a polygon $=\frac{360^{\circ}}{\text { Each Exterior angle }}$
* Exterior angle $=180^{\circ}$ - Interior angle

Probability:
$* P(E)=\frac{\text { No.of favourable outcomes }}{\text { Total possible outcomes }}$
$* \sum P=1$
$* P(A$ or $B)=P(A)+P(B)$
$* P(A$ and $B)=P(A) \times P(B)$

Cumulative Frequency:

* Median: 50\% of Total Frequency
* Lower Quartile: 25\% of Total Frequency
* Upper Quartile: 75\% of Total Frequency

Upper Quartile - Lower Quartile

* $\underline{\text { Range }}=$ greatest value - least value

* Inter Quartile Range:

Statistics:

Histogram:

* Class width $=$ upper limit - lower limit
* Frequency Density = Frequency / C.W

Mean

* $\bar{X}=\frac{\sum x}{n} \quad: \quad \bar{X}=\frac{\sum f x}{\sum f}$

Median

* Median $=\frac{\sum n+1}{2} \quad$ Median $=\frac{\sum f+1}{2}$

Mode:
Most repeated number

Formulae Sheets

Angles Properties:

$\frac{a+b}{a+b=180^{\circ}}$

$x=z \quad$ vertically opposite angles
$y=w$ vertically opposite angles

Angles in a circle:

(a) The angle subtended by an arc (or chord) at the centre is twice that subtended at the circumference.
(b) Angles subtended by the same arc (or chord) are equal.
(c) The opposite angles of a cyclic quadrilateral are supplementary (i.e. they add up to 180°).
(d) A tangent to a circle is perpendicular to the radius at the point of contact.
(e) The angle in a semicircle is always 90°.

(f) The perpendicular bisector of a chord passes through the centre of the circle.

Locus of points:

(a) Locus from a point is Circle.
(b) Locus from two points is Perpendicular Bisector.
(c) Locus from two Lines is Angle Bisector.
(d) Locus from one Line is Parallel Line.

Numbers

Subject Contents:

Candidates should be able to identify and use:
$>$ Natural numbers,
$>$ Integers (positive, negative and zero),
$>$ Prime numbers,
> Square numbers,
$>$ Cube numbers,
$>$ Common factors and common multiples,
$>$ Rational and irrational numbers (e.g. $\pi, 2$), real numbers.

Notes \mathcal{E} examples:

> Includes expressing numbers as a product of prime factors,
$>$ Finding theLowest Common Multiple (LCM) andHighest Common Factor (HCF) of twoor more numbers.

1. $\mathrm{O} / \mathrm{N} / 20 / 11 / 4 \mathrm{D}$
(a) Write the number 3456.789 correct to the nearest 100 .
2. $\mathrm{M} / \mathrm{J} / 20 / 11 / 6$

Safoora is buying some apples, bananas and peaches. She can buy

- packs of 6 apples
- packs of 5 bananas
- packs of 12 peaches. She needs to buy the same number of each fruit.

Calculate the smallest number of packs of apples, bananas and peaches that she needs to buy.
3. $\mathrm{M} / \mathrm{J} / 20 / 12 / 13$
(a) Write 108 as the product of its prime factors.
(b) Find the lowest common multiple (LCM) of 108 and 180.
4. $\mathrm{M} / \mathrm{J} / 19 / 12 / 15$
(a) Write 168 as a product of its prime factors.
(b) The highest common factor of 168 and N is 42 .Given that $200<N<300$, find two possible values of N.
5. $\mathrm{O} / \mathrm{N} / 19 / 11 / 14$

$$
p=2^{3} \times 3 \times 5^{2} \quad q=2 \times 3^{2} \times 5
$$

(a) Find the highest common factor (HCF) of p and q.
(b) Find the lowest common multiple (LCM) of p, q and 21 . Give your answer as the product of prime factors.
(c) Find the smallest integer N, such that $p N$ is a square number.
6. $\mathrm{O} / \mathrm{N} / 19 / 12 / 3$

| $\sqrt{35}$ | $\sqrt{36}$ | 36 | $\frac{36}{37}$ | 37 | $\frac{37}{36}$ | 3.7 From this list of numbers, write down |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) a prime number,
(b) a square number,
(c) an irrational number.
7. $\mathrm{O} / \mathrm{N} / 18 / 11 / 8$
(a) Write down an irrational number which has a value between 4 and 5 .
(b) Kofi is using number cards to form a 5-digit number. His number is a multiple of 8.Complete the final digit of his number.

8. $\mathrm{O} / \mathrm{N} / 18 / 11 / 17$

$$
120=2^{3} \times 3 \times 5
$$

(a) Express 1200 as the product of its prime factors.
(b) Find the smallest value of n, such that $120 n$ is a square number.
9. $\mathrm{M} / \mathrm{J} / 18 / 21 / 1 \mathrm{C}$
(i) Write 540 as the product of its prime factors.
(ii) p is the smallest possible integer such that $540 p$ is a square number.Find $\sqrt{540 p}$, giving your answer as the product of its prime factors.
10. $M / J / 18 / 22 / 4 b$
(b) Find the lowest common multiple (LCM) of 140 and 770.
(c) A rectangular field measures 450 m by 306 m . The whole field is divided into identical square plots with no land remaining. Find the largest possible side length for the squares.
11. $\mathrm{S} / \mathrm{P} / 18 / 1$ (a) Find the Highest Common Factor (HCF) of 36 and 54.
12. $\mathrm{O} / \mathrm{N} / 02 / 1 / 7$ Written as product of prime factors, $198=2 \times 3^{2} \times 11 \& 90=2 \times 3^{2} \times 5$

Use these results to find highest common factor of 198 and 90 .
13. $\mathrm{M} / \mathrm{J} / 10 / 12 / 9$ Written as product of prime factors, $168=2^{3} \times 3 \times 7$.
(a) Express 140 as a product of its prime factors.
(b) Find highest common factor of 168 and 140.
(c) Find the smallest positive integer, n, such that $168 n$ is a square number.
14. $\mathbf{M} / \mathrm{J} / 07 / 1 / 6$ Find lowest common multiple of $154 \& 49$.
15. $O / \mathbf{N} / 03 / \mathbf{1 / 6 (a)}$ Find lowest common multiple of 12,30 and 66.
(b) Three lightships flash simultaneously at 600 a.m.

The first lightship flashes every 12 seconds, the second lightship every 30 seconds and the third lightship every 66 seconds. At what time will the three lightships next flash together?

16. O/N/01/1/11

Numbers $168 \& 324$, written as the products of their prime factors, $168=2^{3} \times 3 \times 7,324=2^{2} \times 3^{4}$ Find (a) largest integer which is a factor of both $168 \& 324$.
(b) Smallest positive integer value of n for which $168 n$ is a multiple of 324 .
17. $\mathbf{O} / \mathbf{N} / 06 / 1 / 8$ Written as product of its prime factors, $360=2^{3} \times 3^{2} \times 5$.
(a) Write 108 as the product of its prime factors.
(b) Find lowest common multiple of 108 and 360.
18. $\mathrm{O} / \mathbf{N} / 09 / 1 / 4$ The numbers 294 and 784, written as product of their prime factors, are $294=2 \times 3 \times 7^{2}$, $784=2^{4} \times 7^{2}$. Find largest integer which is a factor of both $294 \& 784$.

19. O/N/01/1/11

The numbers 168 and 324 , written as the products of their prime factors, $168=2^{3} \times 3 \times 7,324=2^{2} \times 3^{4}$ Find (a) Largest integer which is a factor of both $168 \& 324$.
(b) The smallest positive integer value of n for which $168 n$ is a multiple of 324 .
20. A no. written as product of its prime factors is $2^{2} \times 5^{2} \times 7$. (a) Evaluate this number.
(b) Lowest common multiple of $2^{2} \times 5^{2} \times 7$ \& another number, N, is $2^{2} \times 3 \times 5^{2} \times 7^{2}$. Find the lowest possible value of N.

21. $\mathrm{M} / \mathrm{J} / 05 / 1 / 10$

Green Line buses run every 10 minutes.
Red Line buses run every 20 minutes.
Purple Line buses run every 35 minutes.
One bus from each Line leaves city centre at 0900 .
After how many minutes will buses from all three Lines next leave the city centre at the same time?

22. $\mathrm{M} / \mathrm{J} / 12 / 11 / 9$

Buses following route A leave bus station every 5 min .
Buses following route B leave the bus station every 6 min.
Buses following route C leave the bus station every 9 min.
Three buses, following routes A, B and C, leave together at 1300.
What is the next time when buses following all three routes leave the bus station together?
23. $\mathbf{M} / \mathrm{J} / \mathbf{1 7 / 1 1 / 4 (a)}$ Express 36 as the product of its prime factors.
(b) Write down two prime numbers whose sum is 15.
24. $\mathbf{M} / \mathbf{J} / \mathbf{1 7 / 1 2 / 2 0 (a)}$ (i) Write 54 as the product of its prime factors.
(ii) Find the smallest possible integer m such that $54 m$ is a cube number.
25. $\mathbf{M} / \mathrm{J} / 04 / 1 / 25$ Express 7056 as the product of its prime factors.
26. $\mathbf{M} / \mathrm{J} / \mathbf{0 7 / 1 / 6 E x p r e s s} 154$ as the product of its prime factors.
27. $\mathbf{M} / \mathrm{J} / \mathbf{9} / \mathbf{1} / 3 \mathrm{bWrite}$ down two prime numbers between $30 \& 40$.
28. $\mathrm{O} / \mathrm{N} / \mathbf{0 3 / 1 / 4 S t a t e}$ which of the following numbers are irrational $\sqrt{2} \times \sqrt{\mathbf{8}}, \frac{\mathbf{2 2}}{\mathbf{7}}, \pi, 2 \sqrt{3}$
29. $\mathrm{O} / \mathbf{N} / 07 / \mathbf{1} / \mathbf{1 6 b}$ The numbers 225 and 540, written as the products of their prime factors, are $225=3^{2} \times 5^{2}, 540=2^{2} \times 3^{3} \times 5$.
(i) Write 2250 as the product of its prime factors.
(ii) Find the smallest positive integer value of n for which $225 n$ is a multiple of 540 .
30. $\mathbf{M} / \mathrm{J} / \mathbf{0 3 / 1 / 6 (a)}$ Express 99 as the product of its prime factors.
(b) Find the smallest possible integer value of n for which $99 n$ is a multiple of 24 .
31. $\mathrm{M} / \mathrm{J} / 12 / 11 / 12$

From nos. listed above, write down (a) a prime number, (b) a cube number, (c) an irrational number.
32. $M / J / 13 / 11 / 12$

The three cards above can be rearranged to make three-digit numbers, for example 916. Arrange the three cards to make
(a) the three-digit number that is closest to 650,
(b) the three-digit number that is a multiple of 7,
(c) a three-digit number that is a square number.
33. $\mathrm{M} / \mathrm{J} / 13 / 12 / 8$
(a) James thinks of a 2 digit number. It is a cube number. It is an even number. What is his number?
(b) Omar thinks of a two-digit number. It is a factor of 78. It is a prime number. What is his number?
(c) Write down an irrational number between 1 and 2 .
34. $\mathrm{M} / \mathrm{J} / 14 / 11 / 15$
(a) Find value of s which makes $8 s+2$ a prime number.
(b) Write down an irrational number b/w 7 and 8 .

Set Language \mathcal{E} notation

Subject Contents:

> Use language, notation and Venn diagrams to describe sets represent relationships between sets
$>$ Definition of sets: e.g.
$A=\{x: x$ is a natural number $\}$
$B=\{(x, y): y=m x+c\}$
$C=\{x: a \leq x \leq b\}$
$D=\{a, b, c \ldots\}$

Notes \mathcal{E} examples:

Includes using Venn diagrams to solve problems.
Notation:
Number of elements in set A
".. is an element of ..."
$\mathrm{n}(A)$
"... is not an element of ..."
ϵ
Complement of set $A A^{\prime}$
The empty set
φ
Universal set
A is a subset of B
A is a proper subset of B
$A \subseteq B$
A is not a subset of B
$A \subset B$
A is not a proper subset of B
$A \nsubseteq B$
Union of A and B $A \not \subset B$

Intersection of A and $B \quad A \cap B$

1. $\mathrm{O} / \mathrm{N} / 20 / 12 / 13$
(a) $P=\{1,2,3,4,5,6,7,8\} \quad Q=\{1,3,5,7,9,11\}$ (i) Find $n(P \cup Q)$.
(b) $p \in A \cap B$
$q \in(A \cup B)^{\prime}$
$r \in A \cap B^{\prime}$
On the Venn diagram below, write each of the letters p, q and r in its appropriate subset.
2. $\mathrm{O} / \mathrm{N} / 20 / 11 / 14(\mathrm{a})$

In the Venn diagram, shade the subset $(P \cup Q) \cap R^{\prime}$.
(b) In a group of 42 people,

- 30 people speak Spanish
- 20 people speak French.
(i) Find the smallest possible number of people who speak both Spanish and French.
(ii) Find the largest possible number of people who speak neither Spanish nor French.

3. $\mathrm{M} / \mathrm{J} / 20 / 12 / 16$

$$
Q \subset P: P \cap R=\varnothing
$$

Complete the Venn diagram to show sets Q and R.

$\boldsymbol{\varepsilon}=\{x: x$ is an integer $1 \leq x \leq 10\}$,
$F=\{x: x$ is a factor of 24$\}$,
$S=\{x: x$ is a square no. $\}$
(i) Complete the Venn diagram.
(ii) Find $n(F \cup S)^{\prime}$

5. $\mathrm{O} / \mathrm{N} / 18 / 21 / 4$
(a) $\boldsymbol{\varepsilon}=\{x: x$ is an integer $1 \leq x \leq 10\}$,
$A=\{x: x$ is a factor of 20$\}$,
$B=\{x: x$ is a multiple of 4$\}$
(i) Complete the Venn diagram. [2]
(ii) State $\mathrm{n}(A \cup B)$.
(iii) Describe in words the set $A \cap B^{\prime}$.

6. $\mathrm{M} / \mathrm{J} / 19 / 12 / 10 \mathrm{~b}$

$\varepsilon=\{x: x$ is a positive number $\}, A=\{x: 9<x<10\}, B=\{x: x$ is an irrational number $\}$ Write down an element of $A \cap B$.
7. $\mathrm{O} / \mathbf{N} / 18 / 12 / 22 \varepsilon=\{0,1,2,3,4,5,6\}, P=\{x: x=0,1,2\}, Q=\{y: y=0,2\}$
(a) List the members of $P \cap Q$.
(b) Find $n\left(P^{\prime} \cup Q\right)$.
(c) $R=\{z: z=2 x+y, x \in P, y \in Q\}$ List the members of R.
8. $\mathrm{M} / \mathrm{J} / 12 / 22 /$
$\boldsymbol{\varepsilon}=\{x: x$ is an integer, $2 \leq x \leq 14\}, A=\{x: x$ is a prime number $\}, B=\{x: x$ is a multiple of 3$\}$
List the members of $(\boldsymbol{A U B})^{\prime}$
9. $\mathrm{M} / \mathrm{J} / 10 / 22 /$
$\boldsymbol{\varepsilon}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}, A=\{x: x$ is a multiple of 3$\}, B=\{x: x$ is a factor of 24$\}$ $C=\{x: x$ is an odd number $\}$
(i) Find $n(B)$
(ii) $(\boldsymbol{A} \boldsymbol{U} \boldsymbol{B} \boldsymbol{U} \boldsymbol{C})^{\prime}$

