Cambridge Assessment International Education

AS Level 9609 MATHEMATICS TOPICAL PAPER 1

ALL VARIANTS WITH MARK SCHEME

FROM JUNE 2013 TO NOVEMBER 2019

Old specification

ARSLAN TANVIR SHEIKH

03214525069

STUDENTS RESOURCE

Airport Road: Shop 23-24, Basement Faysal Bank, Near Yasir Broast, Airport Road, Lahore. **Mob:** 0321-4567519 **Tel:** 042-35700707

DHA Ph-V: Plaza No. 52-CCA, Ph-5 DHA Lahore Cantt.

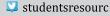
Mob: 0321-4924519 **Tel:** 042-37180077

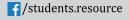
DHA Ph-I:

38-G, H Block Market, Phase I, DHA Lahore.

Mob: 0321-4567952 **Tel:** 042-35691196

Johar Town:


Opp. Beaconhouse JTC Adjacent Jamia Masjid PIA Society Shadewal Chowk, Johar Town Lahore.


Mob: 0313-4567519 **Tel:** 042-35227007

Bahria Town:

70 - Umer Block Main Boulevard Commercial Area Bahria Town Lahore. **Mob:** 0315-4567519 **Tel:** 042-35342995

Book Title: AS Mathematics Topical Paper 1 with Mark Scheme

Book Code 1105

1st Edition | 1st impression Edition:

Arslan Tavir Sh. Prepared by:

Syllabus: Latest 2020-22 Syllabus

STUDENTS RESOURCE Airport Road 0423-5700707 Published by:

Price: 3600/- (Including Mark Scheme Booklet)

COPYRIGHT ©STUDENTS RESOURCE®2024

The rights of Students Resource being Publisher of this book has been asserted by him in accordance with the Copy Right Ordinance 1962 of Pakistan.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Students Resource or under licence from the Registrar Copyright from Intellectual Property Organization Pakistan.

The syllabus contents and questions from past papers used herein are the property of Cambridge Assessment International Education (CAIE). The use of syllabus and questions from past papers used in this book does not west in the author or publisher any copyright ownership, nor does the use of CAIE material imply any affiliation with CAIE.

Any individual or institution violating the copyrights will be prosecuted in the court of law under the lex-fori of Pakistan at his/their expense.

No further notes and legal warning would be issued for any kind of legal activity.

Legal Advisor

Content

Topic 1	Quadratics	3
Topic 2	Functions	67
Topic 3	Coordinate Geometry	158
Topic 4	Circular Measure	221
Topic 5	Trigonometry	299
Topic 6	Series	382
Topic 7	Differentiation	493
Topic 8	Integration	634

1.	9709/11/m/j/1	13. C)8(i)
1.	7 / U / / I I / III / / /	10, \	/ [] /

(i)		
		•••••

2. 9709/12/m/j/13, Q#3

The straight line $y = mx + 14$ is a tangent to the curve $y = \frac{12}{x} + 2$ at the point P . Find the value of the constant m and the coordinates of P . [5]

3.	9709/12/o/n/13,	Q10(ii)	(iii),
----	-----------------	---------	--------

A curve has equation $y = 2x^2 - 3x$.

(ii)	Express $2x^2 - 3x$ in the form $a(x+b)^2 + c$, where a, b and c are constants, and state the coordinates $a(x+b)^2 + c$, where a, b and c are constants, and state the coordinates $a(x+b)^2 + c$, where $a(x+b)^2 + c$, w	ates
	of the vertex of the curve.	[4]

.....

The functions f and g are defined for all real values of x by

$$f(x) = 2x^2 - 3x$$
 and $g(x) = 3x + k$,

where k is a constant.

(iii) Find the value of k for which the equation gf(x) = 0 has equal roots. [3]

Quadratics	5	9709 Mathematic
0700/12/5/6/12 0#1		
9709/13/o/n/13, Q#1		
Solve the inequality $x - 2x - 2 > 0$	0.	

5.	9709/1	1/m/j/14,	Q#2,Q#11(i)
-		,	T , T (-)

(i) Express $4x^2 - 12x$ in the form $(2x + a)^2 + b$.	[2]
(ii) Hence, or otherwise, find the set of values of x satisfying $4x^2 - 12x > 7$.	[2]
	• • • • •
	·····
	·····
	·····
	·····

(i) For the	e case where	the line is	a tangent	to the curv	e, find the	e value of t	the constan	t <i>c</i> .
••••••	••••••			•	••••••	••••••	••••••	••••••
•••••	••••••	•••••		•••••	••••••	••••••	••••••	•••••
						•••••		
••••••		•••••		· • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••
		•••••	•••••		•••••		•••••	
			••••					
				••••••			•••••	•••••
		•••••						

8

7.	9709/12/m/j/14,	Q#10(iii),(iv)
----	-----------------	----------------

Functions f and g are defined by

$$f: x \mapsto 2x - 3, \quad x \in \mathbb{R},$$

 $g: x \mapsto x^2 + 4x, \quad x \in \mathbb{R}.$

Find the set of values of x for whi	$g: x \mapsto x^{-} + 4x,$ $ich g(x) > 12.$	$x \in \mathbb{N}$.	1	[3]
				•
				•
				•
				•
				•
				•
				•
				•
				•
				•
				JP.
			Sitis Sitis	,
n Tanvir Sh.	A	irport Road Ba	ahria Town Johar T	·0

	e value of t		•		•			•	
			•••••			•••••			
•••••			•••••			•••••		•••••	
•••••	•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
•••••	••••••	••••••	••••••	•	••••••	•••••	•••••	•••••	•
						•••••			
		•••••	•••••			•••••		•••••	
•••••	•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
			•••••			• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	
•••••	••••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
•••••								•••••	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	

8.

9709/13/m/j/14, Q#8,Q#9(i)

answer to st						
						•••••
••••••						•••••
						•••••
•••••						•••••
						•••••
•••••			•••••	•••••••		•••••
) Find the se	t of values of k	for which the 6	equation $2x^2$ –		nas no real roots	
) Find the se	t of values of k	for which the e	equation $2x^2$ –		has no real roots	
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation 2x ² -			
) Find the se	t of values of k	for which the e	equation 2x ² -			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			
) Find the se	t of values of k	for which the e	equation $2x^2$ –			

9.

	A =	$=6x^2+\frac{768}{x}.$		
				••••••
	•••••	•••••	•••••	• • • • • • • •
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
709/11/o/n/14, Q#5,Qi Find the set of values of points.		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		=2x-k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = y^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = x^2 + kx - 2 \text{ at two}$	o dist
Find the set of values of		= 2x - k meets the curv	$y = x^2 + kx - 2 \text{ at two}$	o dist

Quadratics	12	9709 Mathematics
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	[2]
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	
(i) Express $x^2 - 2x - 15$ in the form (x)	$(a+a)^2 + b$	

The function f is defined for	or $p \le x \le$	q, where p	and q are positive	constants, by
-------------------------------	------------------	--------------	----------------------	---------------

$$f: x \mapsto x^2 - 2x - 15$$
.

The range of f is given by $c \le f(x) \le d$, where c and d are constants.

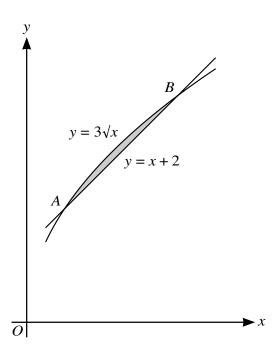
For the case where c = 9 and d = 65

(iii) find p and q,	[4]
	TENET

12.	9709/12/o/n/14, Q#6(i	i)

The equation of a curve is $y = x^2 + ax^2 + bx$, where a and b are constants.	
(i) In the case where the curve has no stationary point, show that $a^2 < 3b$.	[3]
	,
	,
	•
	,
	•
	•

13. 9709/13/o/n/14, Q#3(i),Q#9(i)


	_	_
(÷)	Express $9x^2 - 12x + 5$ in the	$a form (ax + b)^2 + a$
(1)	EXDITESS $9x - 12x + 0$ III U	(ax + b) + c.

[3]

.....

14.

The diagram shows parts of the graphs of y = x + 2 and $y = 3\sqrt{x}$ intersecting at points A and

(i)	Write down an equation satisfied by the <i>x</i> -coordinates of <i>A</i> and <i>B</i> . Solve this equation and find the coordinates of <i>A</i> and <i>B</i> .	d hence [4]
		•••••
		•••••
		•••••
		•••••
		OF TO
		Myon,

15.	9709/11/m/	i/15.0)#9(iii).C)#5((ii)
10.	J 1 0 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 10,	マハンい	111/9~	,,, ,	/

The equation of a curve is $y = x^3 + px^2$, where p is a positive constant.

Another curve has equation $y = x^3 + px^2 + px$.

i) Find the	e set of va	ilues of p	for whic	ch this cu	rve has n	io station	ary pon	its.		
		••••••	•••••	• • • • • • • • • • • • • • • • • • • •				•••••	••••••	••••
	••••••		•••••		•••••	•••••	•••••	•••••	•••••	••••
			•••••	•••••						••••
	••••••	•••••						•••••		••••
										••••
	•••••									
										••••
(ii) Expre	$\operatorname{ss} A$ in th	ie form a	-(r-b)) ² , where	a and b	are const	ants.	A = 12r -	$-r^2$	
									•••••	••••
				•••••						••••
										••••
••••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••	••••

17. 9709/12/m/j/15,Q#1	1(i)),(ii)
------------------------	------	--------

(i) Find the set of values of p for which the equation $f(x) = p$ has no real roots.	[3]
	· •
	••
The function g is defined by $g: x \mapsto 2x^2 - 6x + 5$ for $0 \le x \le 4$.	
(ii) Express $g(x)$ in the form $a(x+b)^2 + c$, where a, b and c are constants.	[3]

18	9709/13/m/j/15,Q#1	
10.	9709/13/HVJ/13,Q#1	
	Express $2x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where a, b and c are constants.	[3]
		SS
		The

5	Solve the equation $\sin^{-1}(4x^4 + x^2) = \frac{1}{6}\pi$.

	$\sin x^2 - 4x + (1)$				and the curve are	6
	•••••				•••••	•••••
			•••••			
•••••	•••••			••••		•••••
		•••••				
•••••	•••••					
						•••••
one of th	e points of inte	ersection is –1.	Find the <i>x</i> -coo	ordinate of the o	ther point of inter	secti
						•••••

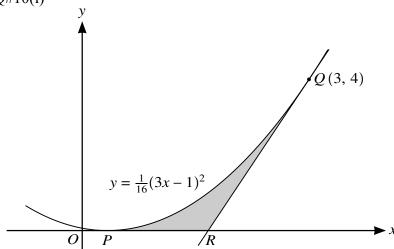
		[-

21. 9709/12/o/n/15,0	O#8
----------------------	-----

1. Quadratics

2

i) In the acc	a where $a - 6$ and $b =$	8 find the range of f	
i) in the cas	e where $a = 6$ and $b = -$	8, find the range of 1.	
• • • • • • • • • • • • • • • • • • • •	•••••••••••		•••••
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
• • • • • • • • • • • • • • • • • • • •			•••••
•••••			
••••••••••			
i) In the cas			
		of the equation $f(x) = 0$ are k and $-2k$,	
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		
	e where $a = 5$, the roots		


24

Show that if the equation $f(x+a) = a$ has no real roots, then $a^2 < 4(b-a)$.		•••••
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.		
	Show that if the equation $f(x + a) = a$ has no real roots, then $a^2 < 4(b - a)$.	[3
OF		
		OF T

22.	9709/13/o/n/15,Q#1,Q#3(i)
-----	---------------------------

	urdes of e for which	if the fine does not if	ntersect the curve.	[
				•••••
•••••				••••••
				•••••
(i) Express $3x^2$ –	-6x + 2 in the form	$a(x+b)^2 + c$, where	a, b and c are constants.	
., 1			,	
		•••••		•••••

24. 9709/12/f/m/16,Q#10(i)

The diagram shows part of the curve $y = \frac{1}{16}(3x - 1)^2$, which touches the x-axis at the point P. The point Q(3, 4) lies on the curve and the tangent to the curve at Q crosses the x-axis at R.

(i) State the x-coordinate of P.	[1]
	·•
	•
	•
	· ·
	•
	, .
	Mich
#UZ	JUR

2.5	0700/11/	1:11 (04)	(-) OHC	(1. \ (: : \
25.	9709/11/m	/1/10,U#6	(a),O#6	(0)(11)

	Find the values of the constant m for which the line $y = mx$ is a tangent to the curve $y = 2$.	$x^2 - 4x + 8$ [3
(b)		tants. The
	The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 + ax + b$, where a and b are constrollar solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find i) the coordinates of the vertex of the curve $y = f(x)$.	tants. The
	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find	
(ii	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find	[2]
(ii	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find i) the coordinates of the vertex of the curve $y = f(x)$.	[2]
••••	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find i) the coordinates of the vertex of the curve $y = f(x)$.	[2]
(ii	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find i) the coordinates of the vertex of the curve $y = f(x)$.	[2]
(ii	solutions of the equation $f(x) = 0$ are $x = 1$ and $x = 9$. Find i) the coordinates of the vertex of the curve $y = f(x)$.	[2]

26.	9709/12/m/j.	/16.O#110	i),(ii),	(iii).(iv)
	J 1 0 J 1 1 1 1 1	, 10, 2,,, 11,	- / 9 \ / 9	\ /9\ - •	,

The function f is defined by $f: x \mapsto 6x - x^2 - 5$ for $x \in \mathbb{R}$.

(i)	(i) Find the set of values of x for which $f(x) \le 3$.			
••••				
•••••				

•••••	• • • • • • • • • • • • • • • • • • • •	 	

(ii) Given that the line $y = mx + c$ is a tangent to the curve $y = f(x)$, show that $4c = mx + c$	$n^2 - 12m + 16.$

 •••••	••••••	••••••	•••••

The	e function g is defined by g: $x \mapsto 6x - x^2 - 5$ for $x \ge k$, where k is a constant.	
(iii)	Express $6x - x^2 - 5$ in the form $a - (x - b)^2$, where a and b are constants.	[2]
•		•
•		
		•
		•
•		
		•
(iv)	State the smallest value of k for which g has an inverse.	[1]
		•
•		
•		•
•		
•		
	Ą	MRC
		,